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(U) ABSTRACT

The reasons for the selection of the smoothing and dif-
f£. :nciation formulas, which are currently used in calculation
o. smooth missile positions, velocities and accelerations, are
s’ sdied. The formulas are described in detail anc taeir efiect
i illustrated. Approximate values of the noise level in -
sr oth Jdata are provided and the magnitude of systematic «r

d. to these procedures is estimated.
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SECTION I. (S) INTRODUCTION

In the analysis of missile test flights, velocities and acceler-
ations are the bases of many other calculations. One method of determin~
ing velocities and accelerations is by numerical differentiation of
position data. The position .ata may be obtained from one of several
types of instrumentation. T. data contain random errors of observation
and reauction as well as sysicuatic errors. It is usually necessary to
<mooth the data to obtain realistic numerical derivatives. Thr numerical
smoothing and differentiation procedures have undergone consid«rable
wvolutionary change as a result of experience with varied instrumentation,
missile systems, and flight paths. The complexity of the procedures has
incr -sed greatly. Questions have frequently ariseu concerning the
sres.r smoothing and differentiation procedures and the reasor: for
sin, nese procedures. This report provides some answers bV :.ving
.om: .nsight into the general problem of smoothing and differer~iat:
ind .y description of the currently used procedures.

In analyzing smoothing and differentiation procedures it . dee'r
5> .ve some means of estimat:ag the dispersion of noise in position..
el »cities, and acceleration:z A method has be - devis-  for .oing .
ind -s described briefly A - :chod is also desccibed 4 .opl -d for

det¢.rining the systemat:c errors introduced by the smoothinz .ac d.
=nt .tion procedures

SECTiON II. (S) SMOOTHING AND DIFFERENTIATION PROCE UK. CUKE: NTLY

IN USE

Deve:opment

“h: smoothing procedures now in use in :he¢ Dara Reduction E
gencraliy use moving arc smoothing formulas. In - .5 operation a “uIv
is .itted to an arbitrary number of points which arz ucuas.. -« rial
at = fixea time interval and represent a segment of a rire 3.
or . ve points, usually the central point, is adjustea tc . Mm%
-0 v~c fitred curve. Then the curve fit formula is shiftea . 13 =t

cim¢ series so that one new point is added to the set and one >td po

at .. other end of the series is removed. The fitting and aciustm¢
procedure is then reapplied to the new set, leading to the ac _ustmen-

a point adjacent to the previously adjusted point. This procedurc - .-
be co.tinued over a major portion of a time series. This point=-by-pii.
moving arc smoothing reduces the discontinuities due to end effects ¢

a minimum by distributing them among all the intervals.

The early smoothing procedures employed involved unweighted poly-
nom:ial approximation by least squares and orthogonal polynomial focrmu.
Later it was found that the smoothing formulas derived by L. S. Dede:
(Ref 1) were convenient and gave superior results. The goal of a sr
ing . mula is to increase the smoothness of the data without 2xcessi




(X LY X e _ o e 096 @ eoo oo
e o © o O ® ¢ o e o
e o oo [} S (X ] o oo * e
e o @ . [ e o o e o [ I
ee see %0 oc0 o o o0 oe o o s see oo

increasir, the adjustments necessary to achieve this smoothness. The
smoothness and adjustments may be m:asured in terms of the magnitude of
th. nth ¢ der differences and the magnitude of the residuals.

‘he locities and =ccel. . © s calculated by numerica” oiffer-
ior frequently showed sci .atioms of considerable i p itude
at -n or reduct o: of -hesc oscillations, which were considered
is. .c, was requiced The amplitude of these oscillations increased
'y .:th an incrcasing degree of the smoothing formula. Thus it was
1ible to use as low a degree as possible without causing gross
-ti. of the original data it was found that a degree lower than
¢ ¢ 1d not be used with the point spreads that were being considered
+d de :ree Dederick smoothing formulas of increasing point spread
v ipp .ed to actual data. In that way a high degree of local
nne-+ could be achieved while the data still contained very distinct
_at-ons of considerable amplitude. It was apparent that the
.at. sns could be reduced by increasing the point spread of the
a d. zree smoothing so as to encompass several oscillations. Thus
,rm. .2 would not be able to foilow the individual oscillations and
th. .. fore reduce their amplitudes. Our smoothing formula was
.ed to cover a 20-second time interval in order to ac. omplish this
io 1in the oscillations. One-tenth of a second time steps »&¢ s
a . point smoothing formul. This large number of ‘points -~ :d
che ¢ilculation time on a aac .ne appreciable and the build- 4
a-off errors might be apprecianle also  The difficulty was '
4+ .eviat . by using a 101 point, second degree smoothing formula which
used ever second point in the sequence. A further improvement in the
lc. smoothuness of the velocities and accelerations was achieved by
2 a =zcond pass smoothing of forty-ome scints and second degree

O .

Thi smootning procedure has e disaag aintage of not being abie to
-ve any physical fluctuatior neving a .wriod and amp.itude sim:lar
less -han that of the osci. .ations. The character:stic Mach ore
bat.e is of sufficient period and amplitude to remain distinc:
-ar. the chacacteristic engine cutoff pattern would be grossly
-te. -v this smoothing procedure. In order to preserve the
‘te .stic engine cutoff pattern, the point spread of the smoothing
-re:.-d in steps as the time of cutoff is approached. After cutoff
the Joint spread is increased in steps back to that of the general
ia. Although this permits the preservation of the general
.cteristic pattern it leaves both noise and oscillations in the data
cre vicinity of cutoff. Smoother values of accelerations are
-<s1-able for use in other calculations. Therefore a second degree
polynomial is fitted to the ten seconds of acceleration data immediately
preceding cutoff. This polynomial is evaluated to get smooth
accelerations for the five seconds immediately preceding cutoff.
Another second degree polynomial is fitted to the ten seconds of
acceleration data immediately following the chamber pressure level-off
following cutoff. This polynomial is evaluated to get smooth acceleration:
for the five seconds immediately following chamber pressure level-off
ne.

o

b
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Special procedures are also used for smoothing and differentiation
at the beginning and at the end of the time series. These involve the
use of shorter point spreads and asymmetric formulas

.. general purpose smoothing and differentiatic: program utilizing
Dede- ck coefficients wr: developed in cthe Test Data Processing Sectior
This -rogram was used in some of our studies. It was possible to
sele = any point spread up through twenty-five and any degree .p thro.
four A number of programs utilizing higher point spreads were prepar
.y W iton L. Whigham of the Test Data Processing Section for use in ir
stuc 28

“bviously the procedures could be greatly improved if ths osci.ia

.ior ould be kept from deveioping. It has beer discovered that some
.ontr .bution to the oscillations may be due to roundoff exceedirg the
-ele .ve accuracy of the data. This phenomenon has been studied and
epor ;ed (Ref. 2). It may be possible to eliminate this source of

sc’ *ations. It has also been established that some contribution to
‘he oscillations is due to the smoothing of random noise. This
pheromenon has also been studied and reported (Ref. 3). This latter
ysci -tion source cannot be easily eliminated since it is due ouly

-0 t - randomness of the noi- .nd the sampiing rate. Other =curces
ssc: ations in the various .\pes of tracking instrumentation = so exi:T.

Description

The present smoothing and differentiation procedures . ‘e
ro, ..mmed for the IBM No. 709. The . :put to the program is trajecro .
os:.ion data calculated at a fixed time interval. The progra: consi--
f rwo main parts 'n the first part the position data are smoothed
nd irst and s ¢ pc derivatives are calculated at each time step usiv
-hec smootheu positions. In the second part of the program the
salc :lated velocities and accelerations are smoothed and a second degr.-:
arv fit i< used to obtain smooth accelerations near cutoff time.

4 .airial equations of the first part

Ja 2 Un = Uy =

Io] Uo Uo 0 when to _<_ tto

-1 - = =

do =5 (3Up + 2U1 + Uz - Us) when tg > t¢g (e
v—;( = El - (62 - ﬁl) when to > tto i
K = T].l - (ﬁz - -ﬁl) when tO > tto (-

33Uy + 2z + Ts - T) (s:
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where t: . C's may be found in Column D of Table 1

Fo

U, -

. 22y be found in Column A of Table 1.

ﬁ3 - T.J.‘!.
' 2At

63 - 2-62 +-ﬁl
ot

IA

Z‘ Ci Un+i when 3 < n < 14
i==3

s may be found in Column B of Tavie 1

) Up4: = Up-, h 3 <
= AL when 3 < n

IA
'd
S

Un+y * 2Up + Up-y

= when 3 < n < 14

At2

C; Un+i when 15 < n < 24

>~

=15

, and Tln when 15 < n < 24 see Equations (12, and (13).

+25
Z C; Unei when 25 < n < 49

i= -25

(6)

)

(9)

(10

il

(12)

1 13)

(14)

(15)




Rrde

ees o0
[ ] L
(X ] L4
] L 4

L4

where the C's may be found in Column F of Table 1.

For U, and U when 25 < n < 49 see Equations (12) and (13).

+50

[ Z C{ Uy,y  when 50 <n <99

1=+~50
where -he C's may be found in Column G of Table 1.
Fo Gﬁ and Eﬁ when 50 < r < 99 see Equations (12) and (13).

b. General equations of the first part

+

}; Ci U roi when 100 < n < (tco - 101 At)

U. -
i==50

50
re . ('s may be found in Co.umn G of Table 1.

Untz = Un-2
4L

Chez - 20, + Upp

2At2

c
"

c. Cutoff equations of che first part

[=1H

or Uy, Uy, Upt

when t ., - 100 At <n < tec 351 At see Equatrionms {18), (iz}

(i

(16)

N

when tgo = 50 At < n < tgo - 26 At see Equations (15), (12), (13)

‘410

‘g = Z Ci Up+i when t o = 25 At < n <t + 25 At

i=-10

shere the C's may be found in Column C of Table 1.

For G

(20)

n» Un when teo ~ 25 a6 <n<t o+ 25 At see Equations«(12), (.i3)
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For U,, Un’ U,

when too + 26 At < n

when teo

wh.n tco + 101 At S n s tL

- Termiual equations

A

+51At<n<ct

teo 90 At see

Equations (15), (12), (13),

+ 100 At see Equations (16), (12), (13),

- 100 At see Equations (17), (18), (19).

of the first part

s e
-

Fc En, Eﬁ, Up:

when t; - 99 At <n < tf, - 50 At see Equations (16), (12), (13),
when tp ~ 49 At < n <ty - 25 At see Equations (15), (12), (13),
when gy - 24 At <n <t - 15 At see Equations (14), (12), (13),
wi.atp - 14 At <n <ty - 3 At see Equations (11), (12) (1%,
+2

- \

U P L Ci UL”2+1'. ("l)

Te - may be found in Column A of Table 1

-— ﬁ - E -
U. :._L_::T:_E_g (22)

. 2At
= Up-; - 2Up-z + Up-g

U " 23

L e (23)
= 1 s - - N
. U, - U
= L L-2
Uy = AT (25)
= Uy - 2Up.. + Up.
U. . L L-1_ L-2 (26,

at2




— 1 — — -

Up = 5 (3Ug + 2Up-y + V-2 - Up-s) (27)

-' 1 s ’-.-;— -— - —

= —___LZAt (‘3UL-4 - OJL-S + 36UL"2 - 48UL"1 + ZSUL) (28)
- Tz (1T, -56Upg + 11407 - 1040, - 350,) (29)

scontinuities exist in the smooth data at the :unction pointe

twe the different smoothing formulas. These discontinuities resu
. ve wild derivatives at these points. Special treatment was
nece: saiy at these changeover noints when seven point spread smoothing
or gr:2ter was used. A maximum of four points of velocity and accelera-
tion -.re replaced at each junction. These replacements were based on

second degree curve fit through the previous seven points of velocity
and acceleration. The method of least squares was used for the curve .

e Junction point replacement equations

Ag + Ay t + Ap t2

where Ay, A;, Az, Bg, Bi, B, are the coefficients obtained by the abov
mentioned least squares curve fits.

f. General equations of the second part

_ +20
Up = Z ¢ En+i when 20 < n < t., - 51 At and (32>
i==-20 when tCPL + 51 At S n S tL - 20 At

<nere C's may be found in Column E of Table 1.

- +20
ﬁn = Z Cy -ﬁn+i when 20 < n < t,, - 51 At and
i=-2c when topp, + 51 At < n < tp - 20 At

/her C's may be found in Column E of Table 1.

g. Cutoff equation of the second part

*»
Up=Ag + Ay t + Ap t2 when tco-SOAtSnStco (34
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= .1s second degree curve fit is obtained by applying the method of
Least :quares to the one hundred points preceding tco.

- Bog+ Byt ot when tgpp, < n < topp, + 50 At (35)

1s second degree curve fit is obtained by applying the method of
ast quares to the one hundred points following tcpL.

. actuai calculations in the program are carried out in two
stii... passes through the data. The smoothing of the positious and
< ca.culation of velocities and accelerations are done in the first
ss. The application of the various formulas of the first pass to
» purticular parts of the trajectory is summarized ir Figure 1.
tai.s of the application of the smoothing formulas in the first pass
3 {.lustrated in Figures 3 through 5.

"'ne smoothing of velocities and accelerations and the curve fitting
acc ierations in the vicinity of cutoff are done in the second pass
.2 application of the various formulas of the second pass to the
,arti. siar parts of the trajectory is summarized in Figure 2.

cffects

The significant factor concerning these smoothing and

aiffer atiation procedures is their eftectiveness in producing smooth
a~d r istic velocity and acccleration data  Figures 6 through =
snow - “cities which were calculated by the current smoothing and

:ffe .ciation program. The data used in the calculations were .t &

«-t. ¢n second time interval whereas the data used n the grapas

e .iected at one second time intervals Figures 9 through 13 sho.

szme: ts of the velocity data on a smaller scale in order to illus rate

fec. vely the local smoothness. These data are at the one-tentn
scon cime interval which was used in the calculations. Figures 14
-hrou : i6 show accelerations which were calculiated by the curren:
smooting and differentiation program. The data used in the calculations
were =t one-tenth second time interval whereas the data used in the
graphs were selected at one-second time intervals. Figures 17 through
21 show segments of the acceleration data on a smaller scale in order
c6 iliustrate effectively the local smoothness. These data are at

"> one-tenth second time int:rval which was used in the calculations.

It will be noted that some problem areas remain in these procedures
The discontinuities in accelerations at the end points of the curve
fit data preceding and following cutoff represent a difficulty which
needs further improvement. The noise and oscillations which remain ir
the acceleration data for the period of thrust decay represent another
problem area. These difficulties are clearly manifested in Figures
70 and 21 and will be eliminated as time permits.
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It is sometimes desirable to have a quantitative measure of the
dispersion of the noise in order to compare the relative merits of
different smoothing techniques. In order to estimate the dispersion
of noise in our positions, ~relocities and acceleration a curve
firti- o program was used co fit these smooth data at successive time
interv. - A second degree polynomial was fitted to each ten-second
interv. an: residuals were calculated. The standard deviation of the
cesid. . was zalculated for each interval. It was assumed that the
secon.. .cgree polynomial was capable of following the general trend

: the data over most of the ten-second intervals. It was also ¢ sumed
at . second-degree polynomial was not capable of following the
.ise or other minor fluctuations in a ten-second interval Therefore
e s.andard deviation of the residuals should be a fair estimate of
e norse level of the smoothed data. Figures 22 through 30 show these
lcu.ated standard deviations for the smoothed positions, velocities
d & celerations. Generally the noise level in smooth UDOP positions
s less than 2.0 meters, in smooth UDOP velocities is less tha» 07
.ter ner second, and in smooth UDOP accelerations is less than .02
cter per second per second.

~he achievement of smoothness is of little value if it is attain o
tk - expense of gross distortion of the original data It would
ertzinly not be feasible to use smoothing formulas which regularly
rodi .ed systematic errors which exceed the noise level of the smooti o
.ta It was therefore desirable to determine the magnitude "t systernatic
roi ¢ produced by our current smoothing and differentiatio _rocedur:-
synthetic trajectory program Was used to generate smooth positions,
loc .ties and accelerations representative of a typical missiie flig
nese smooth positions were then used as input to our current soothzr
ad ¢_fferentiation program. These smoothed positioms, velocities anc
scce rations were then differenced with the smooth positions, velocitz.
.nd z.celerations generated by the synthetic trajectory. The differerce
ndicate systematic errors introduced by the smoothing and differeantiatri-
-og:am. Figures 31 through 39 show these differences As might be
«pec .ed the differences only become appreciable at times of raidical
ws. .al change such as main engine cutoff (157.77 seconds) . vernier
igirc ignition (166.28 seconds), and vernier engine cutoff (176.29

aconde’ .
:CTION III  (S) CONCLUSIONS

.t may be concluded that the current smoothing and differentiation
procedures are satisfactory 'for most parts of a typical missile test
flight and for typical tracking instrumentation. The exceptions are
the times of rapid physical change such as main engine cutoff, vernier
engine ignition, and vernier engine cutoff. The attainment of equivalent
accuracy at these times requires additional observation and special

treatment. Investigation of these possibilities will proceed as time
permits.
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i The noise level in the smooth UDOP positions is generally less than
2 0 meters. In the smooth UDOP velocities the noise level is generally
less than .07 meter per second and in the smooth UDOP accelerations is .
generally less than .02 meter per second per second. The systematic
errors introduced by the smoothing and differentiation procedures are
generally ess than the noise ievels of the smooth data.
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(U) ABSTRACT

The reasons for the sele:tion of the smoothing and dif-
f -entiation formulas, which are currently used in calculation
o smooth missile positions, velocities and accelerations, are
s died. The formulas are described in detail and thei . Icct
i. illustrated. Approximate values of the noise level in the
s: ooth data are provided and the magnitude of systematic errors

di. to these procedures is estimated.
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gc. -~ I. (S) INTRODUCTIO.

the analysis of missile test flights, velocicies and acceler-
ti sre the bases of many other calculations One method of determin~
ng ocities and accelerations is by numerical differentiaticn of

>0s. 1on data. The position data may be obtained from =ae of ceveral
.ype of instrumentation. The data contain random errors of cbservart

:nd -eduction as well as systematic errors. It is usually necessary -
.mocth the data to obtain realistic numerical derivatives. The numers . .
smoothing and differentiation procedures have undergone considerable

.vol .lonary change as a result of experience with varied instrumentat ‘o,
aiss e ys-ems, and flight paths. The complexity »>f zhe procedures *-.
inc: .-« greatly. Questions have frequently arisen concerning the

>res nt smouching and differentiation procedures and the reasor. for

.sir these procedures. This report provides some answers by giving
.ome¢ insight into the general problem of smoothing and differe-~~_atio-
.nd oy description of the currently used procedures.

n analyzing smootring and differentiation procedures it :: des
o0 ive some means of estimatiang the dispar ior of nocise in positior
el: :ies, and accelerations A merhod has been 1-vised for doing
nd . described briefly. A method is also descr: ind applied £fc
iet -1ining the systematic errors introduced by the ..t ing ™d dif.. -
.ntistion procedures.

SEC" N II (S) SMOOTHING AND DIFFERENTIATION PROCEDIRES CURRiﬁTLY
IN USE o

Development

The smoothing procadures now in use in the Data Redui.om oo
gen 'y use moving arc smoothing formulas. In this operatior a ¢
is d to an arbitrary number of points which are usually s~ :al
at . .ed time interval and represent a segment of a time ser. 3. -
54 .. points, usually the central point, is adjusted to comlu. . &¥ w

to o fitted curve. Then the curve fit formula is shifted alung =

ciz eries so that one new point is added to the set and ore o’d po.

at ¢ other end of the series is removed. The fitting and ad justrmer
prc: -dure is then reapplied to the new set, leading to the adiu:tmer..

a pc.ot adjacent to the previously adjusted point. This procedure m:

be continued over a major portion of a time series. This point-by-pui-:
moving arc smoothing reduces the discontinuities due to end effects tc

a minimum by distributing them among all the intervals.

“he early smoothing procedures employed involved unweighted poly
nom.c. approximation by least squares and orthogonal polynomial formul.s.
Later it was found that the smoothing formulas derived by L. S. Dederi:k
(Ret 1) were convenient and gave superior results. The goal of a zmocth-
ing ! mula is to increase the smoothness of the data without excessi:

_ mlww—
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increasing the adjustw.nts necessar, to achieve this smoothness. The
smoothnecs and sdju-tments may be measured in terms of the magnitude of
the nth ¢ »r i< ¢ ences and the magnitude of the r:siduals

Q-

&

e

fhe ocities and accelerations calculated by numerical differ-
.iot .requently showed oscillations of considerable amplitude

.at..n or reduction of these oscillations, which wers censiderad
‘1is .c, was required. The amplitude of these oscillations increased
.y w.th an increasing degree of the smoothing formula. Thus it was
:ble to use as low a degree as possible without causing gross

rtic- of the original data. It was found that a degree lower than

.4 o« .1d not be used with the point spreads that were being considerea

i de.ree Dederick smoothing formulas of increasing point spread
pp..ed to actual data. In that way a high degree of local

1ne. . could be achieved while the data still contained very distinct
.at.ns of considerable amplitude. It was apparent that the

.iations could be reduced by increasing the point spread of the

4 de:ree smoothing so as to encompass several oscillations. Thus
sem . would not be able to rollow the individual oscillatiors and
there fora reduce their amplitudes. Our smoothing formula was

ded ro cover a 20~second time interval in order to accomplish this
cio in the oscillations. One-tenth of a second time steps means
a ' point smoothing formula. This large number of points would
-he calculation time on a machine appreciable and the build-up of

,a-0f orrors might be appreciable also. The difficulty was
‘viat:: by using a 101 point, second degree smoothing formula which

sverv second point in the sequence. A further improvement in the
smoothness of the velocities and accelerations was achieved by
3 a «<cond pass smoothing of forty-ome points and second degre:
™hi. .woothing procedure has the disadvantage of not being able to
ve ay physical fluctuation having a period and amplitude similar
le than that of the oscillations. The characteristic Mach >ne
~ba . is of sufficient period and amplitude to remain distinct
er, ne characteristic engine cutoff pattern would be grossly
;rtec oy this smoothing procedure. In order to preserve the
cte -stic engine cutoff pattern, the point spread of the smoothing
cre &d in steps as the time of cutoff is approached. After cutoff
the >oint spread is increased in steps back to that of the general
.a., Although this permits the preservation of the general
~te istic pattern it leaves both noise and oscillations in the data
s v 1inity of cutoff. Smoother values of accelerations are
ible for use in other calculations. Therefore a second degree
nomi: is fitted to the ten seconds of acceleration data immediately
~din, citoff. This polynomial is evaluated to get smooth
era: -ns for the five seconds immediately preceding cutoff.
or ---:ond degree polynomial is fitted to the ten seconds of
_erac.on data immediately following the chamber >r ssure level-off
owing cutoff. This polynomial is evalusted to get smooth accelerations
the : v2 saconds immediately following chamber pressure level-off

1 - -~

—<ne

e e
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32 :ial procedures are a:iso used for smoothing and differentiation
beginning and at the end of the time series. These involve the
e shorter point spreads «nd asymmetric formulas.

3
[/
~

generai purpose smoothing and differentiation program atitiz. .
Ded¢ ¢ wefficients was developed in the Test Data Processing Sec’.:-
This »zcam was used in some of our studies. It was possible to
sele .ny point spread up through twenty-five and any degree up thr. ug!
our A number of programs utilizing higher point spreads were prepared
)y Wi.con L. Whigham of the Test Data Processing Sectidn for use in the
stud es.

Obviously the procedures could be greatly improved if the oscilia
-ior. could be kept from developing. It has been discovered that so.e
_ont ‘ibution to the oscillations may be due to roundoff exceedirg the
‘ela ive accuracy of the data. This phenomenon has been studied anc
eported (Ref 2). It may be possible to eliminate this source of
.sciilations. It has also been established that some contribution to
-he oscillations is due to the smoothing of random noise. This
phenomenon has also been studied and reported (Ref. 3). This latter
oscillation source cannot be easily eliminated since it is dus only
-0 tae randomness of the noise and the sampling rate. Other sources oI
»scillations in the various typss of tracking instrumentation also ev.:

2. Description

The present smoothing and differentiation procedures are
>rog ~ammed for :the IBM No. 709. The input to the program is trajectorv
pos: 1on data calculated at a fixed time interval. The program consists
>f rwo main parts In the first part the position data are smoothed .
and first and second derivatives are calculated at each time step usir-
-hese smoothed positions. In the second part of the program the
al. ilated velocities and accelerations are smoothed and a second degree
ur. fit is used to obtain smooth accelerations near cutoff time.

a. Initial equations of the first part

,,'O:Bo=ﬁo=0 Whentost v e

to
Uy = % (3Ug + 2U; + Uz - Ug) when to >ty (2
ﬁo = 31 - (ﬁz - 31) when tg > tyg
ﬁo = ﬁl - (ﬁg - ﬁl) when tgy > ty,
31 = % (3u; + ZEé + Es - 55)

g
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- U2 > Uo
U = TA¢ (6)
— - ’7— Tr
U __“.I%_.’L_EQ (7>
At
+2
v > € Uiz (8)
1=

-re ' s may be found in Column A of Table 1.

U - Uy
2At

e |
it

©
N’

Es - iﬁz + ﬁl

~l
i
-
=
A"

at?
+3
T = Z Cy Upnei when 3<n < 14 L
BT

ce 5 may pe found in Column B of Table 1.

= En+1 - -ﬁn-l ;

L - AL when 3<n < 14 (12)

& 6 +3 - ZE + ﬁ -1

| LA Lo 2 2 when 3 <n< 14 .3)

N

+15

= \"

U, - /. C; Upn+i when 15 < n < 24 (14)
i=-15

where the C's may be found in Column D of Table 1.

For En and En when 15 < n < 24 see Equations (12) and (13).

+25
T - Z C; Uy when 25 < n < 49 (15)

=28

o
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where he C's may be found “n Column F of Table 1.

i ﬁn and Gn when 25 < n < 49 see Equations (12) and (13).

) Ci Un+i when 50 < n X 99 (16;

i=-50
.re the C's may be found in Column G of Table 1.

Tor -ﬁn and Tln when 50 < n < 99 see Equations (12) and (13).

». General equations of the first part

TS0

U. C; U

2l when 100 < n < (t,, = 101 At) (17)

L==50
ere .ne C's may be found in Coiumn G of Table 1.

Jn+z Up-2 (18"
4AL g

Chez - 2U, + Up»

19;
2AL2 (

¢. Cutoff equations of the first part

T Un, U

o’ Uy

when t., = 100 At < n < tgo = 51 At see Equations (16), (12} (12

when tgg = 50 At < n < tee 26 At see Equations (15), (12). (13).

+.C
\
/

Ci Un+i when t.o = 25 At < n < teg + 25 At (20,
i=-10
shere :ine C's may be found in Column C of Table 1.

For En’ Gn when t ., = 25 At <n S teo + 25 At see Equations-{12), .

S




For Uy, U, Up:

when t.o + 26 At < n < teg
wh. .o 751 At SnX te,
wh

d. Terminal equations

Fcr En, ﬁn, ‘ﬁn:

whz=n

wl 2n

when

when

=]

-

of the first part

ty, -~ 99 At <n <ty -
tp ~ 49 At <n < tp -
ty, - 24 At <n Sty -

tL=14At§n/

I/

(]
l
t

2

—
) nl I3
= 2; “i ULU2+1

may be found in Column A of Table 1.

Up-z - Ur-3
24t

Up-y - 2Up-z + UL-g
at?

Ui

(30, + 2Up-p + Up-g - UL-5)
Up = U,
Nt

Up = 20 * ULz

At2

+ 50 At see Equations (15), (12), (13),
+ 100 At see Equations (16), (12), (13;

. teo + 101 At < n <ty - 100 At see Equatioms (17), (18), (19).

50 At see Equations (16), (12), (13),
25 At see Equations (15), (12), (13),
15 At see Equatioms (14), (12), (13),

3 At see Equations (11), (12), (13}.

(21}

(22)

(23}

(24)

(25)

(263
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L= g (3UL + 2UL-1'+ UL"Z - UL_4) (27)
- R o - —~ -
v T'-";:_' (3UL_ - 16UL“S + 36UL‘2 - ABUL_:' - ZSUL) (28)
1 -— — -— — —
o= TpaE (LU, -56Up-g + 114Up_p - 104Up. - 3507) (29

sigcontinuities exist in the smooth data at the junction points

setweon the different smoothing formulas These discontinuities result

» very wild derivatives at these points. Special treatment was

aecessary at these changeover >oints when seven point spread smoothing

or greater was used. A maximum of four points of velocity and accelera:
jon were replaced at each junction. These replacements were based or

. second degree curve fit through the previous seven points of velocity
-nd «cceleration. The method of least squares was used for the curve fit.

e. Junction point replacement equations

.n;AO+Alt+A2t2 (3

Jy = Bo +B1 t + B2 t2

ner aAg, Ay, Az, Bg, By, Bz are the coefficients obtained by the above
ontioned least squares curve fits. :

f. General equations of the second part

_ +20
;: = EZ Ci En+i when 20 < n <t o - 51 At and (32)
==20 when topp + 51 At < n < gy, - 20 At

shere C's may be found in Column E of Table 1.

_  +20
En = Z Ci TJn+1 when 20 < n < t,o - 51 At and
i=-20 when topp, + 51 At Sn <ty - 20 At

sher. .'s may be found in Column E of Table 1.

g. Cutoff equation of the gsecond part

"
—

Up = Ag + Ay t + Ap t2 when t__ - 50 At Sn<E (36
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This second degree curve fit is obtained by applying the method of
least squares to the one hundred points preceding tco.

T. = B~ & . - Bz t? when tgpp, < n < tgpp - 50 at (35)

..8 second degree curve fit is obtained by applying the method of
2ast squares to the one hundred points following tcpL-

1e actual calculations in the program are carried out in two
stir.c passes through the data The smoothing of the positions and
> calculation of velocities and accelerations are done in the first
. :s8. The application of the various formulas of the Ifirst pass to
2 p rticular parts of the trajectory is summarized irn Figure 1
:ai.s of the application of the smoothing formulas in the first pass
‘e 11lustrated in Figures 3 through 5.

The smoothing of velocities and accelerations and the curve fitting
¢ accelerations in the vicinity of cutoff are done in the second pass
e application of the various formulas of the second pass to the
.rticular parts of the trajectory is summarized in Figure 2.

Effects

The significant factor concerning these smoothing and
‘ffe entiation procedures is *their effectiveness .z producing - 200th
i r alistic velocity and :zcce.eration data. Figures 6 through &
»w -elocities which were calculated by the current smoothing and
fe entiation program. The data used in the calculationrs were at a
.-t nth second time interval whereas the data used in the grapa-
‘e elected at one second time intervals Figures 9 through 2 show
;me rs of the velocity data on a smaller scale in order to illustrat:¢
fec.ively che local smoothness. These data are at the one-tenth
con? time interval which was used in the calculations. Figures 14
rougn 16 show accelerations which were calculated by the current
.aoothing and differentiation program. The data used in the calculatior:
;ere . one-tenth second time interval whereas the data used in the
raphs were selected at one-second time intervals. Figures 17 througt.
shov segments of the acceleration data on a smaller scale in order
s iliustrate effectively the local smoothness. These data are at
‘ne one tenth second time interval which was used in the calculations.

It will be noted that some problem areas remain in these procedures
The discontinuities in accelerations at the end points of the curve
fit data preceding and following cutoff represent a difficulty which
needs further improvement. The noise and oscillations which remain in
the acceleration data for the period of thrust decay represent another
problem area. These difficulties are clearly manifested in Figures
20 and 21 and will be eliminated as time permits.
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.5 sometimes desirable to have a quantitative measure of the

spe ~ on of the noise in o.aer to compare the relative merits of
i.ffe .at smoothing techniques. In order to estimate the dispersion

: noise _n our positions, valocities and accelerations & curve

tti .. vrogram was used to fit these smooth data at successive time
iters - & zecond degree polynomial was fitted to each ten-second
-ter - a.c fesiduals were calculated. The standard deviation of the
.sic . .s was calculated for each interval. It was assumed that the
ccon. degree polynomial was capable of following the general trend
£ the data over most of the ten-second intervals. It was also assumed
aat the second-degree polynomial was not capable of following the

,ise or other minor fluctuations in a ten-second interval ‘Therefore
.e s.andard deviation of the residuals should be a fair estimate of

e noise level of the smooth¢” data. Figures 22 through 30 show these
alculated standard deviations for the smoothed positions, velocities
.nd accelerations. Generally the noise level in smooth UDOP positions
s les: than 2.0 meters, in smooth UDOP velocities is less than .07
2ter :er second, and in smooth UDOP accelerations is less than .02

ter se' second per second.

e achievement of smoothness is of little value if it is attained
tt: expense of gross distortion of the original data. It wo.id
ortz:.nly not be feasible to use smoothing formulas which regularly
.roduced systematic errors which exceed the noise level of the smoothed
data It was therefore desirable to determine the magnitude of systewva:
xrors produced by our current smoothing and differentiation procedure:
. synthetic trajectory program was used to generate smooth positions,
locities and accelerations representative of a typical missile “light
sese smooth positions were then used as input to our current smoothing
nd a.fferentiation program. These smoothed positions, velocities ana
.ceierations were then differenced with the smooth positionms, velociti
nd e¢ccelerations generated by the synthetic trajectory. The difference
adiv (> systematic errors introduced by the smoothing and different:
;rogram.  Figures 31 through 39 show these differences. As mighi be
.xpec ted the differences only become appreciable at times of rad.cal
‘hysical change such as main engine cutoff (157.77 seconds), vernier
:ngine ignition (166.28 seconds), and vernier engine cutoff (176.29
seconds) .

SECTION III (S) CONCLUSIONS

.t may be concluded that the current smoothing and differentiation
orocedures are satisfactory 'for most parts of a typical missile test
flight and for typical tracking instrumentation. The exceptions are
the times of rapid physical change such as main engine cutoff, vernier
engine ignition, and vernier engine cutoff. The attainment of equivai.
accuracy at these times requires additional observation and special
treatment. Investigation of these possibilities will proceed as time
permits.
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The noise level in the smooth UDOP positions is generally less than
2 0 meters. In the smooth UDOP velocities the noise level is generally
less than .07 meter per second and in the smooth UDO? accelerations is
generally less than .02 meter per second per second. The systematic
errors introduced by the smouthi.g and differentiation procedures are
genavally less than the noise levels of the smooth data.
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